What is a volcano?

- A point on the earth's crust where magma forces its way to the surface
- Ash and gases may also escape

Where do they occur?

• On subduction zones

• On constructive plate boundaries

· On hot spots

Main Features of a Volcano

What types of volcanoes are there?

Acid volcanoes

- Highly explosive
- Magma/lava is viscous (thick)
- Found where oceanic crust is subducted under continental crust

Basaltic volcanoes

- Less explosive*
- Magma/lava less viscous (runny)
- Found at rift zones (constructive boundaries) and hotspots
- * Continental hotspots are basaltic but potentially highly explosive

Acid (rhyolitic) volcanoes

Rava domes

- Formed of layers of lava high in silica
- Lava is viscous and does not run very far
- Rounded form
- composed completely of lava

Stratovolcanoes

- Also called composite volcanoes
- Formed of layers of lava and ashes
- Lava is viscous
- Distinct cone shape

Example - lava dome

• Mount St Helens - Washington state, USA

Example - stratovolcano

· Mount Pinatubo, Luzon, Philipines

Other famous stratovolcanoes

Rocation of stratovolcanoes

• Along subduction zones

• Often found in volcanic arcs*

• E.g. Cascade range, USA

Basic (basaltic) volcanoes

- > Also known as shield volcanoes
- Formed of widespread layers of lava low in silica low viscsity, lava travels very far
- > Low form spread over a great distance

Example - basic volcano

· Eyjafjallajökull, Iceland

Example 2

• Kilauea, Hawaii

Galderas

- Collapsed volcanoes
- Magma chamber has emptied and the ground has sunk
- Often becomes a lake
- New volcanoes can form, or pressure can build from below, lifting the ground
- If acidic, this can cause a catastrophic eruption in the form of a "super-volcano"

Paldera - Santorini

- Destroyed the Minoan civilization due to tsunamis circa 1600BC
- · May have given rise to the Atlantis myth

Pellowstone national park

Pellowstone is a hotspot

Hotspots

- Tectonic plate moves over a magma "plume"
- Occasionally erupts,
 creating a volcano
- Hawaii basic
- Yellowstone acid

Polcanic hazards

• Most hazards during eruptions are caused by what comes out of a

In worst case scenarios
then a volcano may
violently explode

volcano

Hazards - ash clouds

- Slow moving
- Weight of ash can collapse buildings
- Destroys crops, pollutes water
- Affects air traffic
- Can enter high
 atmosphere and cause
 cooling disrupting
 climate

- · Molten rocks thrown out of volcano
- Pummice smaller rocks
- Travel short distances
- · Ban start fires

An acid volcano

- Potential for violent eruptions
- Slow moving lava
- Explosions
- Hot ash/cinders
- Pyroclastic flows
- Real danger!

History of eruptions

- 1800 BC destruction of Bronze age settlements then several more times
- 79 AD destruction of Pompeii
- At least 40 times until the last eruption in 1944 witnessed by allied troops towards the end of WW17
- = once every 40-50 years

Buried alive!

Reducing the risks

- · Round-the-clock monitoring of the volcano
 - Tremors, gasses, changes in water
- Identifying hazard areas
 - -Weak spots, secondary vents, predicting routes of pyroclastic flows
- · Creating an evacuation plan
 - —Zoning, warning systems, public education